Diffuse Optical Spectroscopy and Imaging to Detect and Quantify Adipose Tissue Browning

نویسندگان

  • U. S Dinish
  • Chi Lok Wong
  • Sandhya Sriram
  • Wee Kiat Ong
  • Ghayathri Balasundaram
  • Shigeki Sugii
  • Malini Olivo
چکیده

Adipose (fat) tissue is a complex metabolic organ that is highly active and essential. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is deemed metabolically beneficial because of its ability to burn calories through heat production. The conversion of WAT-resident adipocytes to "beige" or "brown-like" adipocytes has recently attracted attention. However, it typically takes a few days to analyze and confirm this browning of WAT through conventional molecular, biochemical, or histological methods. Moreover, accurate quantification of the overall browning process is not possible by any of these methods. In this context, we report the novel application of diffuse reflectance spectroscopy (DRS) and multispectral imaging (MSI) to detect and quantify the browning process in mice. We successfully demonstrated the time-dependent increase in browning of WAT, following its induction through β-adrenergic agonist injections. The results from these optical techniques were confirmed with those of standard molecular and biochemical assays, which measure gene and protein expression levels of UCP1 and PGC-1α, as well as with histological examinations. We envision that the reported optical methods can be developed into a fast, real time, cost effective and easy to implement imaging approach for quantification of the browning process in adipose tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-domain diffuse correlation spectroscopy.

Physiological monitoring of oxygen delivery to the brain has great significance for improving the management of patients at risk for brain injury. Diffuse correlation spectroscopy (DCS) is a rapidly growing optical technology able to non-invasively assess the blood flow index (BFi) at the bedside. The current limitations of DCS are the contamination introduced by extracerebral tissue and the ne...

متن کامل

Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy.

Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological t...

متن کامل

The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics.

Near infrared spectroscopy (NIRS) can detect changes in the concentrations of oxy-hemoglobin ([HbO]) and deoxy-hemoglobin ([Hb]) in tissue based upon differential absorption at multiple wavelengths. The common analysis of NIRS data uses the modified Beer-Lambert law, which is an empirical formulation that assumes global concentration changes. We used simulations to examine the errors that resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017